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A B S T R A C T

This study evaluates eight Satellite-derived Precipitation Estimate (SPE) datasets, which include uncorrected
SPE and gauge-corrected SPE products from Tropical Rainfall Measurement Mission Multi-satellite Precipita-
tion Analysis (TMPA), Global Precipitation Measurement (GPM), Climate Hazards group Infrared Precipitation
(CHIRP), and Precipitation Estimation form Remotely Sensed Information using Artificial Neural Networks (PER-
SIANN). These datasets are utilized with six representative river basins, corresponding to six sub-climate zones
in Vietnam, during the period 2002–2017. The evaluations were carried out in two parts: 1) inter-comparison of
the SPE products with rain gauges, for the six basins; 2) comparison of streamflow simulations, using the Soil and
Water Assessment Tool (SWAT) forced by precipitation from rain gauge and SPE products. The GPM Integrated
Multi-satellitE Retrievals for GPM (IMERG) Final run version 06B (GPM IMERGF-V6) exhibited the best overall
performances among SPE products, in comparison with the rain gauges for the simulation of streamflow. This
study is the first of its kind to validate GPM IMERG products in Vietnam, indicating the strong capability of the
new IMERG retrieval algorithms. The CHIRP with stations (CHIRPS) dataset demonstrates a relatively low bias,
could benefit long-term water resources planning for droughts. In monthly streamflow simulations, the SPE-dri-
ven simulations outperformed rain gauge-driven simulations in a larger basin (North West Region), which has
low rain-gauge density. The results of this study could be a guide to determine the suitability of different SPE
products for hydrological simulations.

1. Introduction

The major uncertainties in hydrological modeling are associated with
incorrect precipitation patterns over space (Sangati and Borga, 2009).
Several studies indicated that a better representation of the spatial vari-
ability in precipitation could improve model performances (Emmanuel
et al., 2012; Lobligeois et al., 2014; Zhao et al., 2013). Rain
gauge-, radar-, and satellite-based products are popular methods to es-
timate precipitation across the globe. Rain gauges are the primary ap-
proach to obtain precipitation information, as they measure rainfall by
directly on the ground and thus do not need transformation into any
type of signal, nor need to be corrected (Kidd, 2001). However, rain
gauge networks are often sparse, with irregular spatial coverage. In
many parts of the world, they are nonexistent (Mondal et al., 2018;
Rana et al., 2015). Moreover, it is often challenging to obtain rain
gauge data, especially in developing countries and transboundary river
basins, for technical and administrative reasons (Gerlak et al., 2011;
Plengsaeng et al., 2014).

Ground-based radar systems are useful, and provide data with high
temporal and spatial resolution. However, radar systems frequently have
a limited spatial range (Michaelides et al., 2009), and are thus
most useful for rapid events, typically in urban hydrology (Thorn

dahl et al., 2017). In addition, radar sensors are often not feasi-
ble in developing countries, due to high installment costs and complex
maintenance demands. In an effort to cover large areas over long pe-
riods, regionally and globally, Satellite-derived Precipitation Estimate
(SPE) products emerge as promising approaches to reflect the spatial
pattern and temporal variability of rainfall. Several gridded SPE prod-
ucts have been developed over the last few decades, including PER-
SIANN (Precipitation Estimation from Remotely Sensed Information us-
ing Artificial Neural Networks) (Sorooshian et al., 2000); CMORPH
(Climate Prediction Center (CPC) MORPHing technique) (Joyce et al.,
2004); GSMaP (Global Satellite Mapping of Precipitation) (Ushio et
al., 2009); TMPA (TRMM Multi-satellite Precipitation Analysis) (Huff-
man et al., 2007); and GPM (Global Precipitation Mission) (Hou et
al., 2014). Moreover, several promising datasets incorporating gauge,
satellite, and re-analysis observations, such as CHIRPS (Climate Hazards
group InfraRed Precipitation with Station data) (Funk et al., 2015),
and MSWEP (Multi-Source Weighted-Ensemble Precipitation) (Beck et
al., 2017), have also been released.

Many studies have shown that gauge-based hydrological models out-
perform SPE-based models, in terms of streamflow simulation (Duan
et al., 2018; Li et al., 2018; Nguyen et al., 2018). However,
SPE-driven hydrological simulations exhibit better performance in sim-
ulating streamflow than rain gauge-driven hydrological simula
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tions, for example, in the Luanhe River (Ren et al., 2018), and Lower
Mekong River basins (Luo et al., 2019; Mohammed et al., 2018).
This is likely associated with the low density of rain gauges and
poor-quality of ground rainfall data. For example, a low rain gauge den-
sity was observed at the Upper Yangtze River Basin of China, where sta-
tions were located approximately every 30,000 km2 (Liu et al., 2017).
Also, Le and Pricope (2017) reported the case of the Nzioa Basin,
Western Kenya, where rain gauge data was missing (30–65% records).
Interpolating that data resulted in a poorer performance than that of
the Climate Forecast System Reanalysis (Saha et al., 2010) and the
CHIRPS (Funk et al., 2015) datasets, in terms of streamflow simula-
tion. Wang et al. (2016) indicated that satellite-based rainfall could
be more suitable for driving distributed hydrologic models, particularly
in basins with poor rain gauge conditions. The superiority of remote
sensing in deriving precipitation products has become more pronounced
as advanced algorithms have been developed. For example, the TMPA
3B42V7 has proven to be better, compared to its previous version TMPA
3B42V6 (Zhang et al., 2019). The increased spatial and temporal reso-
lution of GPM IMERG follow the successes of TMPA (Hou et al., 2014),
with an increase from 0.25° and 3 h to 0.1° and half hour. Furthermore,
a fine spatial scale of CHIRPS (0.05°, ~5 km) has been developed (Funk
et al., 2015). These developments enable SPE to better characterize the
spatial and temporal variability of precipitation.

Each of the SPE products contains various versions, often divided
into two groups: gauge-adjusted (gauge-corrected SPE) and gauge-un-
adjusted (gauge-uncorrected SPE). Gauged-corrected SPE datasets use
measured rain gauges or re-analysis data to adjust precipitation esti-
mates at the locations of the gauges. Correction factors used at those
rain gauge locations are then applied to the entire dataset, leading to
a decrease or increase in rainfall estimates, so that the dataset fits the
directly measured, more precise rain gauge data (Beck et al., 2018).
However, the gauge networks used for corrections (e.g., GPCC-Global
Precipitation Climatology Centre, CPC-Climate Prediction Center) were
sparse in many areas, typical in developing countries. Therefore, rig-
orous comparisons between gauge-corrected SPE products and uncor-
rected SPE products should be performed, specifically in regions where
few gauges are used for creating the adjusted SPE.

In this study, six SPE products were evaluated, including the
gauge-corrected SPE products (i.e., GPM IMERGF-V6, TMPA 3B42V7,
and CHIRPS V2.0) and the uncorrected SPE products (i.e., GPM
IMERGE-V6, TMPA 3B42RT, and CHIRP V2.0), on various climate re-
gions of Vietnam. A hydrological model assessment of the SPE was
performed, using the SWAT (Soil Water Assessment Tool) hydrological
model. This model has demonstrated strong capabilities in hydrologic
assessment throughout Vietnam, in many studies (Ha et al., 2018; Vu
et al., 2012; Vu et al., 2017). The primary goal of this study is to
obtain insight into the performances between gauge-corrected and un-
corrected SPE products in: 1) comparisons to the rain gauge data; and 2)
simulations of the monthly stream flow. In this paper, Section 2 intro-
duces the case study. Section 3 presents material and methods. Section
4 presents the results and discussions, and the conclusions are presented
in Section 5.

2. Watersheds

In this study, six basins with areas ranging from 684 km2 to
6042 km2 were selected (Fig. 1), based on the following criteria. Firstly,
headwater basins were selected, to reduce the impact of human ac-
tivities on the flow regime. Secondly, each basin is located entirely
within a single climatological region of Vietnam; it allows to thor-
oughly examine the performance of SPE datasets over Vietnam. These
sub-climatological regions include North West (S1); North East (S2);
North Delta (S3); North Central (S4); South Central (S5); and Cen-
tral Highland (S6). These regions were classified based on the duration

of the rainy season; the three heaviest rainfall months; differences in
solar radiation; and temperature (Nguyen and Nguyen, 2004), and
are widely accepted by the climatological community (Nguyen-Xuan
et al., 2016; Phan and Ngo-Duc, 2009; Trinh-Tuan et al., 2019b).
Annual precipitation across basins ranges from 1400 to 3800 mm. There
is a seasonal variability in precipitation in each basin, with 70–85% to-
tal rainfall during May-August (MJJA) or September-December (SOND).
For example, in the rainy season, MJJA in the S1 region is highly in-
fluenced by the summer monsoon, whereas the S4 region is dominated
by the winter monsoon (Nguyen-Le et al., 2015). The average eleva-
tions of selected basins are also diverse, ranging from 3 m to more than
2000 m above mean sea level.

3. Data and methods

The chosen approach contains two steps: 1) an inter-comparison of
SPE products with in-situ rain gauge data; and 2) an evaluation of a
hydrological model for monthly streamflow simulation, driven by rain
gauge precipitation measurements and SPE products. Below, we de-
scribe the data and methodology used for these two steps.

3.1. Ground hydro-meteorological data

The hydro-meteorological data used in this study were obtained from
the Vietnam Meteorological and Hydrological Administration (VMHA)
(http://kttvqg.gov.vn/) and National Central for Water Resources Plan-
ning and Investigation (NAWAPI) (http://nawapi.gov.vn/). The data
were recorded, and have undergone quality control at regional meteoro-
logical and hydrological services before the post-processed version was
delivered to the VMHA. This process depends on region and data types,
which are varied from several days to several months (personal commu-
nication).

The daily 2002–2017 runoff data at six hydrological stations were
collected corresponding to different climatological regions (Xala (XL) of
Ma River; Langson (LS) of Kycung River; Hungthi (HT) of Boi River;
Nghiakhanh (NK) of Hieu River; Anchi (AC) of Ve River; and Giang-
son (GS) of Krong Ana River). The data quality of the streamflow was
checked and assured with no gaps, during the given study period. Aver-
aged monthly streamflow at different climate zones in Vietnam exhibits
high variability in both time and space (Fig. 2). Examining Fig. 2 as
we move from the northern part of Vietnam to the south, that is, from
climate zone S1 to S6, we observe that the peak of the monthly runoff
shifts from August (zones S1 and S2) to September (zones S3 and S4) to
November (zones S5 and S6). We also observe that the AC (Ve River)
basin of zone S5 has the largest runoff (by a factor of two as compared
to the other river basins).

We collected daily 2000–2017 precipitation data from 31 rain gauge
stations across six basins (see Supplementary Data S1). There are sev-
eral rain gauges in each of these basins, and their number ranges from
three to seven. The average missing values across all rain gauges were
approximately 1.0%. The long-term mean values were used to substitute
for the missing data. The rain gauge data were tested for homogeneity,
using the double mass curve to exclude systematic errors over time in
the datasets. Annual rainfall at each station was compared with the av-
erage annual rainfall of surrounding stations to detect inconsistencies.
The results indicated no significant difference between the two curves at
all rain gauge stations, ensuring consistency through recorded precipita-
tion.

Besides, at each basin, one to three air temperature datasets (mini-
mum and maximum variables) were collected at meteorological stations,
with the same duration as that of precipitation measured by the rain
gauges. Since air temperature is less varied than precipitation, a small
number of air temperature stations are adequate to represent tempera-
ture profiles throughout the basins.
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Fig. 1. Digital Elevation Model (DEM) and the distribution of hydrometeorological stations, at six basins, used in this study. S1 North West (XL basin of Ma River); S2 North East (LS basin
of Kycung River); S3 North Delta (HT basin of Boi River); S4 North Central (NK basin of Hieu River); S5 South Central (AC basin of Ve River); and S6 Central Highland (GS basin of Krong
Ana River).

In conclusion, the data from rain gauges used in this study serve two
purposes: 1) as a benchmark to compare with the SPE datasets; and 2)
together with air temperature data, as inputs to the SWAT hydrological
model for the simulations of streamflow.

3.2. Satellite precipitation Estimation (SPE) products

3.2.1. TMPA precipitation datasets
The Tropical Rainfall Measurement Mission (TRMM) Multi-satel-

lite Precipitation Analysis (TMPA), launched in late 1997, is a collab-
oration between the National Aeronautics and Space Administration
(NASA) and the Japan Aerospace Exploration Agency (JAXA). It is the
first space mission to measure rainfall in tropical regions. The TRMM
is a low-Earth orbit satellite, equipped with Precipitation Radar (PR);
TRMM Microwave Imager (TMI); Visible and Infrared Scanner (VIRS);
and Lighting Imaging Sensor (LIS) (Huffman et al., 2007). The two
TMPA products used in this study are the near real-time version TMPA
3B42RT (hereafter 3B42RT); and an adjusted version, using monthly
gauge precipitation, TMPA 3B42V7 (hereafter 3B42V7) (Huffman and
Bolvin, 2013; Huffman et al., 2007). The three hours 0.25° grid
TMPA products were accessed from NASA’s Goddard Space Flight Cen-
ter website (https://pmm.nasa.gov/data-access/downloads/trmm), then
accumulated to a daily time step.

3.2.2. GPM IMERG precipitation datasets
The Global Precipitation Measurement (GPM) mission was devel-

oped as a continuation and improvement of the TRMM mission. The
Integrated Multi-satellitE Retrievals for GPM (IMERG) product, is the
Level 3 multi-satellite precipitation algorithm of GPM, which combines
all of the microwave sensors in the constellation, and Infrared-based ob-
servations from geosynchronous satellites (Hou et al., 2014). The two
latest products of GPM IMERG used in this study are GPM IMERG Early
Run Version 6 (hereafter IMERGE-V6) and IMERG Final Run Version 6
(hereafter IMERGF-V6). The half-hour 0.1° gridded GPM IMERG prod-
ucts were accessed from NASA’s Goddard Space Flight Center website
(https://pmm.nasa.gov/data-access/downloads/gpm), then accumu-
lated to a daily time step.

3.2.3. CHIRPS precipitation datasets
University of California-Santa Barbara’s Climate Hazards Group de-

veloped the Climate Hazards group Infrared Precipitation (CHIRP), and
the Climate Hazards group Infrared Precipitation with Stations (CHIRPS)
datasets, which each provides a more than 30 years quasi-global rain-
fall dataset. These products aim to support the United States Agency
for International Development Famine Early Warning System Network
(FEWS NET). The CHIRP dataset estimates rainfall from in

3

https://pmm.nasa.gov/data-access/downloads/trmm
https://pmm.nasa.gov/data-access/downloads/gpm


UN
CO

RR
EC

TE
D

PR
OO

F

M-H Le et al. Journal of Hydrology xxx (xxxx) xxx-xxx

Fig. 2. The observed monthly average runoff and different precipitation datasets (rain gauge; 3B42RT; IMERGE-V6; CHIRP; 3B42V7; IMERGF-V6; and CHIRPS), at the river outlets of a)
XL, b) LS, c) HT, d) NK, e) AC, and f) GS basins.

frared cold cloud duration (CCD) regression, calibrated by 2000–2013
TMPA pentadal precipitation product (Funk et al., 2015). The
gauge-corrected grid CHIRPS dataset uses rain gauge station observa-
tions from various datasets, mainly in the USA, Central America, South
America, and sub-Saharan Africa (Funk et al., 2015). This study ob-
tained the daily 0.05° grid CHIRP V2.0 (hereafter CHIRP) and CHIRPS
V2.0 (hereafter CHIRPS) datasets from the Climate Hazards Group web-
site (http://chg.geog.ucsb.edu/data/chirps/).

3.2.4. PERSIANN precipitation datasets
Precipitation Estimation from Remotely Sensed Information using

Artificial Neural Networks (PERSIANN) is developed at the Center

for Hydrometeorology and Remote Sensing (CHRS) at the University of
California, Irvine. This product uses artificial neural networks (ANNs)
to estimate rainfall rates from cloud-top temperature, measured by long
wave infrared imagery at a spatial resolution of 0.25° (Sorooshian
et al., 2000). The Precipitation Estimation from Remotely Sensed In-
formation using Artificial Neural Networks-Climate Data Record (PER-
SIANN-CDR) is PERSIANN’s adjusted version using Global Precipita-
tion Climatology Project (GPCP) monthly product version 2.2. PER-
SIANN-CDR has a long-term data set with more than 30 years of data
from 1983 to the near present. However, this dataset degrades the
temporal resolution to daily scale (Ashouri et al., 2015; Nguyen
et al., 2019). This study acquired the daily 0.25° gridded PERSIANN
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and PERSIANN-CDR datasets from CHRS portal website (https://
chrsdata.eng.uci.edu/).

A summary of SPE is listed in Table 1, and monthly rainfall distrib-
utions of SPE at each basin are presented in Fig. 2. The rainfall for the
AC (Ve River) basin of Zone S5 is nearly two to three times of the other
five river basins. This is reflected in the monthly runoff, which is twice
as large in the AC (Ve River) basin, compared to the other five basins.

3.3. SWAT model and setup

SWAT (Soil and Water Assessment Tool) is a physically based,
semi-distributed, eco-hydrological model that operates at various
time-steps (i.e., daily, monthly, yearly) to simulate the streamflow, sed-
iment, and water quality of large complex river basins (Arnold et al.,
1998). In the SWAT model, the smallest spatial unit is the Hydrologic
Response Unit (HRU). Runoff is supposed to be predicted separately for
each HRU, then routed to estimate the runoff for each sub-basin, as well
as that of the entire basin. A detailed description of the SWAT model can
be found in Neitsch et al. (2011).

Determining HRUs requires data on elevation, land use, and soil
properties. The 30 m Shuttle Radar Topographic Mission Digital Ele-
vation Model (SRTM DEM), was used to estimate slope and delineate
the basin boundary; it was obtained from United States Geological Sur-
vey (USGS) Earth Explorer (https://earthexplorer.usgs.gov/). The basin
boundaries delineated by SRTM DEM were validated, using a reference
from the Vietnamese national basin database. The average error be-
tween areas delineated from the SRTM DEM and those from the data-
base was 3%, indicating reliable basin boundaries from the SRTM DEM.
The 30 m spatial resolution land-use map representing the year 2010,
was obtained from the land use portal for Lower Mekong Basin, which
was maintained by SERVIR-Mekong (https://rlcms-servir.adpc.net/en/
landcover/). A soil map developed by the Vietnam National Institute for
Soil and Fertilizers, at 1:1,000,000 scale (National Institute for Soils
and Fertilizers, 2002), was used in this study, resampled from poly-
gons to a 30 m raster file. To prepare associated information of soil prop-
erties required in SWAT, a soil database using soil water characteristics
equations, following the work of Saxton and Rawls (2006), was cre-
ated.

Statistical descriptions of elevation, land use, and soil used for the
SWAT input, are described in Supplementary Data S2. Generally,
evergreen forests, mixed forests, and orchards dominate land use, while
Acrisols (ACf, ACu), Ferralsols (FRr), and Fluvisols (FLd) are the dom-
inant soil types across basins. In this study, the watershed networks,
sub-basins, and HRUs were generated by the QSWAT version 1.7 plug-in
in Quantum Geographical Information System (QGIS) version 2.6.1
(Dile et al., 2016). Several advantages of these software systems have
been observed, compared to the commonly used Arc SWAT plug-in on
the ArcGIS software (Mohammed et al., 2018; Tuo et al., 2016). The
advantages are that QSWAT and QGIS are open source software, and
QSWAT has additional features such as merging small sub-basins and
static, and dynamically visualizing the outputs.

A contributing area over a threshold of 25 km2 was applied for all
basins, resulting in ranges from 15 (HT) to 145 (XL) sub-basins. To cre-
ate HRUs, the method of the filter by land use, soil, and slope was
used, with a threshold of 10% percent of sub-basins chosen for each
feature (see Supplementary Data S2). Because solar radiation is not
well-observed, we used the simple Hargreaves method (Hargreaves
and Samani, 1982), which requires only air temperature data to calcu-
late potential evapotranspiration. To simulate surface runoff processes,
the SCS curve number (USDA Soil Conservation Service, 1972) and
Variable Storage Routing method (Williams, 1969), were used. By
changing precipitation input datasets, including rain gauges; 3B42RT;
IMERGE-V6; CHIRP; 3B42V7; IMERGF-V6; and CHIRPS for the SWAT
model, seven simulation scenarios were established for each basin to in-
vestigate the effects of different rainfall inputs on monthly streamflow
simulation.

This study ran the SWAT model on both daily and monthly time
scale, selecting the first two years (2000–2001) as the warm-up period;
the next eight years (2002–2009) as the calibration period; and the last
eight years (2010–2017) as the validation period. The calibration pro-
cedure was performed separately for each precipitation dataset. The au-
tomatic calibration was performed for streamflow simulation based on
the Sequential Uncertainty Fitting algorithm version 2 (SUFI-2) (Ab-
baspour et al., 2007), using the SWAT-CUP tool (Abbaspour et al.,
2015). Fifteen sensitive parameters were identified and set up for the
same initial range for all scenarios (see Supplementary Data S3). For
each scenario, a total of 1000 simulations were generated for the cal-
ibration process, using the Nash-Sutcliffe Efficiency (NSE, Nash and
Sutcliffe (1970)) as the objective function.

3.4. Performance metrics

To compare SPE datasets and ground observations, we considered
the following three performance metrics in terms of rainfall detection:
1) Probability of Detection (POD); 2) False Alarm Ratio (FAR); and
3) Critical Success Index (CSI). To evaluate the SPE datasets in terms
of temporal dynamics, we considered the following three performance
metrics: 1) Correlation Coefficient (CC); 2) Relative Bias (RB); and 3)
Root Mean Square Error (RMSE). To evaluate hydrological model per-
formance, we considered performance metrics, including Nash-Sutcliffe
Efficiency (NSE) and Percentage Bias (PBIAS) (Moriasi et al., 2015).
The POD provides the ratio of the total precipitation events, which SPE
products detect among the actual precipitation events. The FAR evalu-
ates the fraction of false rainfall events, detected by SPE products from
the total rainfall events. The CSI, which is a function of POD and FAR,
is the most balanced and accurate detection metric. The rainfall day
threshold in this study was set as 0.6 mm.day−1 (NCHMF, 2000). The
CC is a score of the similarity between the SPE products and ground
observations, while the RB and RMSE demonstrate the bias and error
of satellite estimates. The NSE indicates how well the observed stream-
flow and the simulated streamflow fits the 1:1 line. The PBIAS mea-
sures the average tendency of the simulated streamflow to be larger

Table 1
Summary of Satellite Precipitation Estimation datasets used in this study, with spatial-temporal characteristics and used period.

Product Name Spatial coverage Spatial resolution Temporal coverage Finest Temporal resolution Latency References

TMPA 3B42RT 50°N – 50°S 0.25° 2000 – present Every three hours Several hours Huffman et al., 2007
GPM IMERGE-V6 65°N – 65°S 0.1° 2000 - present Every half hour Several hours Hou et al., 2014
CHIRP V2.0 50°N – 50°S 0.05° 1981 - present Daily Several days Funk et al, 2015
PERSIANN 60°N – 60°S 0.25° 2000 - present Hourly Several days Sorooshian et al, 2000
TMPA 3B42V7 50°N – 50°S 0.25° 1998 – present Every three hours Several months Huffman and Bolvin, 2013
GPM IMERGF-V6 65°N – 65°S 0.1° 2000 - present Every half hour Several months Hou et al., 2014
CHIRPS V2.0 50°N – 50°S 0.05° 1981 - present Daily Several days Funk et al, 2015
PERSIANN CDR 60°N – 60°S 0.25° 1983 - present Daily Several months Ashouri et al, 2015
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or smaller than its observed counterpart. The formulae and perfect
scores for each performance metric are given in Table 2.

This study aims to assess the quality of SPE in seasonal water bal-
ance. Therefore, we used one-way Analysis of Variance (ANOVA) and
Dunnett’s Test (Ott and Longnecker, 2015), to compare mean values
of SPE with that of the rain gauges. The one-way ANOVA test was first
applied to determine whether significant differences exist between the
means of rainfall datasets. If the difference was significant, Dunnett’s
test was used. By comparing each SPE dataset with a single control (rain
gauge), it was possible to specify which SPE dataset was significantly
different from that of the rain gauge.

4. Results and discussion

4.1. Inter-comparison between rain gauges and satellite precipitation
estimate (SPE) datasets

To assess the statistical characteristics of SPE, the precipitation data
from the eight SPE products (3B42RT, IMERGE-V6, CHIRP, PERSIANN,
3B42V7, IMERGF-V6, CHIRPS, and PERSIANN-CDR) were directly com-
pared to the precipitation data from rain gauges in the six river basins.
We matched precipitation values extracted from SPE’s grids to the rain
gauge locations. If there were more than one rain gauge located in a
grid, we averaged values from those gauges before the comparison. As
we examined the GPCC gauges in Vietnam, 27/31 (~90%) rain gauges
in our study were not used in the generation of the GPCC product.
Therefore, our comparisons between SPE datasets and rain gauges are
considered as an independent evaluation.

4.1.1. Detection metrics assessment
Regarding rainfall detection metrics, the gauge-corrected

IMERGF-V6 exhibited the best overall performance for the entire period
(median POD of 0.718-rank 2; median FAR of 0.391-rank 1; median CSI
of 0.505-rank 1; see Fig. 3 and Table 3). The second-best dataset for
the entire period was IMERGE-V6 (median POD of 0.699-rank 4; me-
dian FAR of 0.403-rank 3; median CSI of 0.497-rank 2), reflecting the
quality of the new IMERG retrieval algorithms on both real-time and
research products (Huffman et al., 2014; Huffman et al., 2018).
Note that uncorrected CHIRP obtained the highest POD score (median

POD of 0.878), but the poorest FAR score (median FAR of 0.546), re-
flecting the imbalance of this rainfall retrieval algorithm. All SPE prod-
ucts exhibited better rainfall detection scores in the wet season than the
dry season, which is in line with previous studies (Le et al., 2018; Li
et al., 2019; Wang and Lu, 2016). The average median values dur-
ing the dry season for POD, FAR, and CSI were 0.486, 0.555, and 0.264,
respectively. The average median values during the wet season for POD,
FAR, and CSI were 0.797, 0.388, and 0.509, respectively (see Fig. 3 and
Table 3). In conclusion, the newly released IMERG-V6 dataset outper-
formed other SPE datasets in terms of rainfall detection. The worst SPE
performance was observed in the PERSIANN dataset.

4.1.2. Temporal dynamic metrics assessment
In the assessment of temporal dynamic metrics (see Fig. 4 and

Table 3), the best overall correlation coefficient for the entire period
was demonstrated by IMERGF-V6 (median CC of 0.650), followed by
IMERGE-V6 (median CC of 0.605). Other SPE datasets exhibited mod-
erate CC scores, ranging from 0.296 to 0.472. The CHIRPS and its un-
corrected CHIRP product exhibited the best overall RB scores for the en-
tire period (median RB of 0.0 for each product), in line with Beck et
al. (2018). These were followed by the IMERGE-V6 and IMERGF-V6
datasets, with moderate RB scores. The best overall RMSE score for the
entire period was achieved by IMERGF-V6 (median RMSE of 12.0 mm.
d−1), followed by IMERGE-V6 and CHIRPS (median RMSE of 12.4 mm.
d−1 and 13.0 mm. d−1). Regarding seasonal assessment, the difference
between the dry and wet seasons, in terms of temporal dynamic metrics,
was not significant. The average median values during the dry season for
CC and RB were 0.373 and −0.066, respectively. The average median
values during the wet season for CC and RB were 0.409 and 0.054, re-
spectively (see Fig. 4 and Table 3). The average median value of RMSE
during the dry season was 7.01 mm. d−1, which was lower than the
RMSE figure during the wet season (18.03 mm. d−1). This reflects less
variability in rainfall during the dry season, compared to the wet season.
The AC basin (South Central), exhibited the largest negative RB and ex-
tremely high RMSE values of all SPE products. This is attributed to the
greater spatial-temporal rainfall variation of this region (Trinh-Tuan et
al., 2019a).

Table 2
Performance metrics for precipitation comparison and hydrological model assessment.

Statistic Equation
Optimal
Value

Performance
Evaluation
Criteria

Precipitation Performance Metrics 1
0
1
1

0
0

Streamflow Performance Metrics 1 VG: G:
S:

NS:
0 VG:

G:

S:

NS:

Note: represents the precipitation observed by the rain gauge and satellite simultaneously. represents the precipitation observed by the satellite, but not observed by the rain gauge.
is contrary to . is observed streamflow (m 3/s) at the i th day or month, is simulated streamflow (m 3/s) at the i th day or month. and are average observed

streamflow and average simulated streamflow, respectively. “VG” Very Good, “G” Good, “S” Satisfactory, “NS” Not Satisfactory.
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Fig. 3. Box plot of rainfall performance metrics a) POD, b) FAR, and c) CSI for six river basins. The red dash line indicates the optimal value. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

4.1.3. Rain-no rain detection assessment
Rain-no rain detection is an important aspect to assess the quality of

SPE products. The 3B42V7 and 3B42RT exhibited the most similar fig-
ures in terms of the number of rainy days, compared to the observations
from rain gauges, for the entire period (Fig. 5). Specifically, 32% of ob-
servations across six basins had rainfall events over the entire period;
those figures from 3B42V7 and 3B42RT comprised 33% of the entire
period. The rainy days detected by PERSIANN, CHIRPS, IMERGF-V6,
IMERGE-V6, accounted for 30%, 27%, 36%, and 37% of the entire
period, respectively. CHIRP exhibited a large overestimation of rainy
days, as 62% of its entire period measured rainfall events, respec

tively reflecting the impact of intercept values in its algorithm (Funk
et al., 2015). The gauge-corrected PERSIANN-CDR also highly overes-
timated the rainy days as these days accounted for 42% of its entire pe-
riod. During the dry season, apart from CHIRP, all SPE datasets under-
estimated rainy days, reflecting the difficulty of SPE in terms of detect-
ing short-term rainfall events. However, IMERG products exhibited sig-
nificant improvement over the other SPE products. During 19% of the
dry period, rain gauge data observed rainfall events, while those esti-
mations from IMERGF-V6 and IMEGRE-V6 were only 2% less (17% of
the dry period), suggesting frequently temporal rainfall sampling (every
30 min) could benefit in capturing short-term rainfall events. On the
other hand, the IMERG retrieval algorithm highly overestimated rain
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Table 3
Median values of the performance metrics of six Satellite-derived Precipitation Estimation, based on daily rain gauge, during 2002–2017. For all the metrics, except for FAR and RMSE,
larger values represent the better performance of SPE products. Values in bold represent the best score for each metric.

3B42RT IMERGE_V6 CHIRP PERSIANN 3B42V7 IMERGF_V6 CHIRPS PERSIANN_CDR

POD Dry 0.391 0.519 0.732 0.347 0.437 0.515 0.465 0.481
Wet 0.722 0.835 0.949 0.680 0.778 0.846 0.725 0.843
All 0.572 0.699 0.878 0.558 0.693 0.718 0.624 0.717

FAR Dry 0.527 0.500 0.694 0.558 0.507 0.467 0.554 0.633
Wet 0.380 0.352 0.480 0.400 0.354 0.344 0.362 0.431
All 0.411 0.403 0.546 0.427 0.400 0.391 0.410 0.490

CSI Dry 0.237 0.311 0.267 0.223 0.255 0.322 0.261 0.237
Wet 0.491 0.563 0.503 0.468 0.498 0.565 0.470 0.513
All 0.399 0.497 0.423 0.386 0.430 0.505 0.398 0.427

CC Dry 0.315 0.497 0.302 0.245 0.430 0.550 0.341 0.302
Wet 0.317 0.610 0.316 0.257 0.420 0.635 0.364 0.351
All 0.358 0.605 0.362 0.296 0.472 0.651 0.394 0.389

RB Dry −0.02 0.06 −0.09 −0.41 −0.08 −0.04 −0.02 0.07
Wet 0.18 −0.04 −0.01 0.01 0.07 0.05 0.00 0.17
All 0.17 −0.03 0.00 −0.03 0.07 0.05 0.00 0.20

RMSE Dry 9.20 6.60 6.30 7.30 6.80 6.10 6.30 7.50
Wet 21.6 15.4 17.2 18.7 20.1 16.2 16.7 18.3
All 16.5 12.4 13.2 15.0 15.4 12.0 13.0 14.4

fall events during the wet season, suggesting a re-evaluation for this al-
gorithm during this period.

4.1.4. Mean annual rainfall assessment
Fig. 6 compares average 2002–2017 rainfall values annually, dur-

ing the wet season, and the dry season, between rain gauge and SPE
products. It was found that CHIRPS product exhibited the most statisti-
cally equal mean with rain gauges, among SPE products (78.6% agree-
ing cases during the entire period). The following SPE products, which
demonstrated significantly similar means with those from rain gauges,
were CHIRP, IMERGF-V6, IMERGE-V6 (overall agreement 70.2%,
67.5%, and 59.5%, respectively). This finding is in line with the low RB
scores of CHIRPS and its uncorrected counterpart, previously described,
reflecting that CHIRPS’ retrieval algorithm is suitable for trend analy-
sis and drought assessment. From another perspective, all SPE products
achieved better agreement during the dry season, than the wet season.
The worst mean estimation was observed at the PERSIANN dataset.

4.2. Hydrological simulation driven by different precipitation data inputs

4.2.1. Daily simulations
Fig. 7 represents the performance measures for daily streamflow

SWAT simulation, driven by different precipitation datasets. For the
NSE scores (Fig. 7a), rain gauge-driven simulations exhibited the best
overall performance (median NSE of 0.720). Two SPE-based models
had moderate performances in simulating daily streamflow. These are
IMERGF-V6-driven simulations; IMERGE-V6-driven simulations, with
median NSE scores of 0.600 and 0.500, respectively. Overall, based on
the median NSE scores, the rain gauge-based models exhibited Good per-
formances in a daily simulation; two SPE-based models (IMERF-V6 and
IMERE-V6) demonstrated Satisfactory performances; while other SPEs
driven simulations performed at Unsatisfactory levels (Moriasi et al.,
2015).

The daily SPE-driven simulations performed better in terms of the
PBIAS score (Fig. 7b). The median PBIAS of IMERG-F-V6-driven sim-
ulations was −1.95%, followed by CHIRPS-driven simulations (2.05%);
3B42RT-driven simulations (2.50%); and rain gauge-driven simulations
(4.65%). These performances were at Very Good levels (Moriasi et al.,
2015). The daily simulation using rainfall inputs from PERSIANN-CDR
exhibited at Good levels based on the PBIAS score (median PBIAS of

−6.85%); the PBIAS scores of CHIRP-, and 3B42V7- driven simulations
were at Satisfactory levels (median PBIAS of 10.10 and 10.25%, respec-
tively). With the median PBIAS scores greater than 15%, IMERGE-V6-,
and PERSIANN-driven simulations were at Unsatisfactory levels (Mori-
asi et al., 2015). Details of the daily simulation results can be found at
Supplementary Data S4.

4.2.2. Monthly simulations
Fig. 8 presents the performance measures for monthly streamflow

SWAT simulation, imposed with different precipitation datasets. Regard-
ing the NSE scores (Fig. 8a), the best overall performance was gained
by rain gauge-driven simulations (median NSE of 0.875). The gauge-cor-
rected SPE-based models had comparable performances in simulating
monthly streamflow. The median NSE values of IMERGF-V6-driven sim-
ulations; 3B42V7-driven simulations; CHIRPS-driven simulations, PER-
SIANN-CDR-driven simulations were 0.770, 0.740, 0.705, and 0.645, re-
spectively. Apart from PERSIANN-driven simulations, the uncorrected
SPE-based model produced monthly streamflow at moderate levels.
The median NSE values of IMERGE-V6-driven simulations, 3B42RT-dri-
ven simulations; and CHIRP-driven simulations were 0.680, 0.545, and
0.540, respectively. Overall, based on the median NSE scores, the rain
gauge-based models exhibited Very Good performances; the gauge-cor-
rected SPE-based models demonstrated Good (IMERGF-V6, CHRIP,
3B42V7) and Satisfactory (PERSIANN-CDR) performances; and uncor-
rected SPE-based models performed at Satisfactory (IMERGE-V6,
3B42RT, CHIRP) and Unsatisfactory (PERSIANN) levels (Moriasi et al.,
2015).

In terms of the PBIAS score (Fig. 8b), the median PBIAS of rain
gauge-driven simulations was 1.25%, followed by 3B42V7-driven sim-
ulations (1.55%); CHIRPS-driven simulations (1.70%); and
IMERGF-V6-driven simulations (2.60%). These performances were at
Very Good levels (Moriasi et al., 2015). The models using rainfall in-
puts from uncorrected 3B42RT and CHIRP datasets exhibited at Good
levels (median PBIAS of −6.25% for 3B42RT and 8.10% for CHIRP); the
PBIAS scores of IMERGE-V6 driven simulations were at Satisfactory lev-
els (mean PBIAS of 11.2%). The median PBIAS of PERSIANN-driven sim-
ulations (24.95%) indicated that these simulations performed at Unsat-
isfactory level. Details of the monthly simulation results can be found at
Supplementary Data S5.
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Fig. 4. Box plot of rainfall performance metrics a) CC, b) RB, and c) RMSE for six river basins. The red dash line indicates the optimal value. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

4.2.3. SPE-driven simulations in a large basin
Although rain gauge-driven simulations exhibited the best overall

performance, compared to SPE datasets, the number of cases in which
the PBIAS scores at Unsatisfactory level (|PBIAS| greater than 15%) from
rain-gauge-driven simulations were high. These Unsatisfactory PBIAS
scores were found at five and three cases in the daily time step and
monthly time step, respectively. This reflects an insufficient estima-
tion at the spatial scale from the rain gauge. On the other hand, the
PBIAS’s Unsatisfactory figures for the IMERGF-V6-based model were ob-
served at two simulations (daily time step, Fig. 7b.) and one simu-
lation (monthly time step, Fig. 8b) only. In daily streamflow simula

tions at the large XL basin, gauge-corrected SPE-driven simulations ex-
hibited comparable in performance as rain gauge-driven simulations.
The daily NSE scores of rain gauge-driven simulations during the cali-
bration and validation period, at the XL basin, were 0.64 and 0.69, re-
spectively (Fig. 9a.). Those figures from IMERGF-V6 were nearly sim-
ilar, with the scores of 0.63 and 0.69, respectively (Fig. 9c). Interest-
ingly, in monthly streamflow simulation at the XL basin, the SPE-based
models were even slightly better than rain-gauge driven simulation. The
daily NSE scores of rain gauge-driven simulations during the calibra-
tion and validation period, at the XL basin, were 0.80 and 0.74, re-
spectively (Fig. 10a); those from the IMERGF-V6-driven simulations
were 0.84 and 0.91, respectively (Fig. 10c). We also examined the ex
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Fig. 5. Box plot of the number of rainy days retrieved from rain gauge and Satellite-derived Precipitation Estimation during the dry, the wet, and entire period. The red dash line indicates
the median value from the rain gauge. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Statistically equal mean between Satellite-derived Precipitation Estimation products and rain gauge, during the dry, the wet, and the entire period (2002–2017).

ceedance probability of both daily and monthly streamflow, from obser-
vations and simulations driven by different precipitation datasets, at the
XL basin (Figs. 11 and 12). Overall, the flow curves from simulated
results followed the observation curves well, at low exceedance levels.
At high exceedance level flow, the simulated curves began to look dif-
ferent from the observed curve. CHIRPS- and CHIRP-driven simulations
produced better accurate curves than that from rain gauge-driven simu-
lation, up to exceedance of around 85% flow for daily streamflow data
and around 75% flow for monthly streamflow data, suggesting the capa-
bility of those products in terms of low-flow simulation.

4.2.4. SPE-driven simulations in basin frequently affected by typhoon and
tropical storm

Many poor scores were reported for the AC (Ve river) basin when
we used SPE datasets as inputs to the SWAT model; whereas the rain
gauge-driven simulations exhibited Good to Very Good performances in
daily streamflow simulation and monthly streamflow simulation (daily
NSE for validation: 0.72, monthly NSE for validation: 0.88; see Sup-
plementary Data S4-5). We initially expected that when the SWAT
model was recalibrated with satellite precipitation data, the problem
of underestimation would be mitigated. However, since the underes-
timations of the SPE products were extremely large at this basin, the
re-calibrated SWAT model did not perform well. This large underestima

tion can be seen in Fig. 13. We used violin plots to examine the distri-
bution of monthly basin rainfall; monthly streamflow from SPE-driven
simulations without re-calibration (i.e., using rain gauge calibration pa-
rameters); and monthly streamflow from SPE-driven simulations, with
re-calibration from each SPE dataset. Although SPE products demon-
strated similar distribution at low to medium rainfall (<500 mm.
month−1), a large discrepancy was found with high rainfall. The max-
imum rainfall per month, measured by the rain gauge, was up to
2250 mm. month−1; while the figures from SPE datasets, ranged from
only 800 to 1500 mm. month−1. When we used the rain gauge's cal-
ibrated parameters for models using SPE rainfall inputs, the distribu-
tions of simulated streamflow were significantly different from that of
observed streamflow (Fig. 13b). On the other hand, by using re-cali-
brated parameters in each SPE dataset, the distributions of simulated
streamflow were more similar to observed streamflow. However, a large
dissimilarity between high streamflow distribution from models and ob-
served data has been identified (Fig. 13c). In short, from the simula-
tion results at the AC basin, we suggest a re-evaluation for SPE datasets
at regions that are heavily influenced by the tropical cyclone and mon-
soon systems. The simulated results of SPE-based models without re-cal-
ibrated parameters were even worse, compared to the models using
re-calibration parameters, which is in line with previous studies (Alazzy
et al., 2017; Li et al., 2018).
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Fig. 7. Performance measures a) NSE, b) PBIAS of daily streamflow SWAT simulations, driven by different precipitation input datasets, at the six basins in Vietnam. Total samples in each
boxplot are 12 (six calibration and six validation values). Boxes represent the interquartile range and median and outliers are lower or higher than the 10th or 90th percentile, respectively.
The performance explanation: VG Very Good, G Good, S Satisfactory. The evaluation period: Cal. Calibration (2002–2009), Val. Validation (2010–2017).

4.3. Gauge-corrected and uncorrected SPE products

Table 4 presents the differences in the median between gauge-cor-
rected and uncorrected versions of SPE datasets, in terms of precipi-
tation and streamflow performance metrics. The gauge-corrected prod-
ucts incorporated five-day gauge data (CHIRPS) and monthly gauge data
(3B42V7, IMERGF-V6, and PERSIANN-CDR) datasets. We expected that
the late release of gauge-corrected products (often in several months’
latency) would result in these products outperforming the uncorrected
products. However, by using various precipitation metrics, we detected
that the gauge-corrected products exhibited little improvement, or even
worse performances (e.g., CHIRPS – CHIRP for POD: −0.254, PER-
SIANN-CDR-PERSIAN for RB: +0.230), in a daily time step. This sug-
gests the necessity of incorporating daily gauge observations to im-
prove precipitation performance at this time step. The monthly stream-
flow performance metrics indicated a considerable improvement on the
NSE scores in both daily and monthly simulation (averaged + 0.13
for daily simulation and + 0.20 for monthly simulation), and a sig-
nificant reduction in the PBIAS scores (-10.3% for

daily simulation and −8.6% for monthly simulation). This reflects that
corrections provide more benefits to hydrological applications.

Note that, in principle, higher spatial resolution is better. However,
CHIRPS uses only infrared data, and, typically, this dataset did not cap-
ture well the variability in precipitation in space. Therefore, the theo-
retical higher spatial resolution might not provide any practical bene-
fit. Previous studies comparing TMPA and CHIRPS performance (Luo et
al., 2019; Wu et al., 2018) reached largely similar conclusions. PER-
SIANN precipitation datasets seem to not be comparable with other SPE
products used in this study, probably because these datasets (1) also use
infrared data as the CHIRPS dataset; (2) have a relative coarse spatial
resolution.

4.4. The relative performance of SPE to rain gauge for SWAT simulation

It is worth highlighting the rationale of “relative performance” when
considering the gauge-based model as a benchmark to investigate the
adequacy of SPE in driving hydrological modeling. We found evidence
that the performances of SPE-based models relative to the rain
gauge-based models (Prelative = (NSESPE-NSERG)/NSERGx100), were to
some degree functions of elevation range and rain gauge network den
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Fig. 8. Performance measures a) NSE, b) PBIAS of monthly streamflow SWAT simulations, driven by different precipitation input datasets, at the six basins in Vietnam. Total samples
in each boxplot are 12 (six calibration and six validation values). Boxes represent the interquartile range and median and outliers are lower or higher than the 10th or 90th percentile,
respectively. The performance explanation: VG Very Good, G Good, S Satisfactory. The evaluation period: Cal. Calibration (2002–2009), Val. Validation (2010–2017).

sity (Fig. 14). Larger basins tended to be poorly gauged, and stream-
flow simulations imposed with SPE at large basins had comparable sim-
ulation results with those using precipitation from rain gauges. The 3D
surface, fitted from elevation range, rain gauge density, and Prelative,
suggested that high Prelative values were observed at basins with a low
rain-gauge density. On the other hand, several studies (Blöschl, 2013)
indicated that hydrological simulations are performed better in large
storage of watersheds. Because the relative variation in streamflow at
these watersheds is small, it leads to better simulation results, compared
to smaller watersheds.

4.5. Limitations and Further study

In this study, we utilized the SPE products for monthly streamflow
simulation, using their finest grid; however, we did not use the same
grid size for different precipitation inputs. This is due to two factors.
Firstly, Bai et al. (2018) revealed that the correlation of SPE with rain
gauges, is different from various spatial resolutions. Secondly, the lack
of advantage of GPM IMERG on streamflow simulation, compared to
3B42V7 at the Ganjiang River basin, might be due to the resampling of
the grid size from 0.1° to 0.25° of GPM IMERG (Zhang et al., 2019).

SPE-driven simulations did not perform well in our simulations at a
daily time step. Further study should apply a bias-correction scheme for
the SPE products on this time step. The study would greatly benefit ex-
amination of extreme analysis and disaster management.

5. Conclusions

This study evaluated the performances of eight Satellite Precip-
itation Estimation (SPE) datasets, including uncorrected versions
(IMERGE-V06, TMPA 3B42RT, CHIRP, and PERSIANN) and gauge-cor-
rected versions (IMERGF-V6, TMPA 3B42V7, CHIRPS, and PER-
SIANN-CDR), regarding six sub-climate zones of Vietnam. The work con-
sists of two parts: 1) comparisons of the SPE products to rain gauges, and
2) using hydrological SWAT models to simulate monthly streamflow at
the six basins, representative of the six climate zones. Our findings can
be summarized as follows:

1) The SPE products exhibited a slightly better performance during the
wet season, compared to the dry season, in terms of rainfall detection
metric (POD, FAR, and CSI). However, the temporal dynamic perfor-
mance (CC and RB) did not show any significant difference between
the two seasons.
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Fig. 9. Comparison between daily observed streamflow and simulated streamflow, driven by a) rain gauge; b) TMPA precipitation datasets; c) GPM IMERG precipitation datasets; d)
CHIRPS precipitation datasets; and e) PERSIANN precipitation datasets, at the XL basin, during 2002 – 2017. The calibration period is 2002–2009; the validation period is 2010–2017.
Apart from panel a), blue texts denote performances of uncorrected-SPE-driven simulations, while red texts denote performances of gauge-corrected-SPE-driven simulations. In the scatter
plot, dash blue line exhibits linear regression between simulated streamflow from uncorrected SPE-based model and observed streamflow. Red line exhibits linear regression between
simulated streamflow from gauge-corrected SPE-based model and observed streamflow. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

2) IMERGF-V6 exhibited the best overall performance among SPE prod-
ucts, in comparison with rain gauges, and as inputs to the SWAT
models for streamflow simulations. Our study is the first attempt
to evaluate the performance of GPM IMERG in Vietnam, suggest-
ing strong capability for this product in hydrological application pur-
poses.

3) CHIRPS achieved the smallest bias among SPE products, compared to
rain gauge data, reflecting the aim of this product as a drought-warn-
ing system and for trend analysis.

4) Gauge-corrected versions of SPE products exhibited slightly better
over the uncorrected versions of SPE products, in terms of precipita-
tion performance metrics. This suggests that the use of sub-monthly
and monthly rain gauges did not significantly benefit SPE’s im
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Fig. 10. Similar to Fig. 9 but for monthly simulations.

provement at the daily time step. However, the gauge-corrected SPE
products performed better than their uncorrected counterparts in
both daily and monthly streamflow simulation.

5) SPE products can serve as alternative inputs to enhance the perfor-
mance of hydrological models in basins, with a low rain-gauge net-
work density.

This study determines the ability of SPE products to estimate rain-
fall, and produce input data for streamflow simulations in Vietnam. Our
findings could be used as a guide to select which SPE products are
suitable for hydrological applications. Although this study is specific

for hydro-climatic conditions in the river basins of Vietnam, the method-
ology can be applied to watersheds in other regions of the world.
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Fig. 11. Exceedance probability of the daily observed streamflow and simulated streamflow, driven by different precipitation inputs, at the XL basin, during the validation period
(2010–2017). The logarithm was applied for the y-scale.
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Fig. 12. Similar to Fig. 11 but for monthly dataset.
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Fig. 13. Violin plots of a) monthly basin rainfall; b) streamflow simulation without re-calibration parameters (rain gauge parameters); c) streamflow simulation with re-calibration para-
meters using inputs from Satellite-derived Precipitation Estimation, at the AC basin. The cross sign indicates the median value; the plus sign indicates the mean value.

Table 4
The difference in median of precipitation and streamflow performance metrics between uncorrected and gauge-corrected SPE products. For all performance metrics, except for FAR, RMSE,
and PBIAS, a positive value represents a better performance gauge-corrected version over its uncorrected version. The bold value indicates the gauge-corrected version worse than its
uncorrected counterpart.

Performances 3B42V7-3B42RT IMERGF_V6-IMERGE_V6
CHIRPS-
CHIRP

PERSIANN_CDR-
PERSIANN

Precipitation Performance Metrics POD +0.121 +0.019 −0.254 +0.159
FAR −0.011 −0.012 −0.136 +0.063
CSI +0.031 +0.008 −0.025 +0.041
CC +0.114 +0.046 +0.032 +0.093
RB −0.1 +0.08 0.0 +0.230
RMSE (mm.
d −1)

−1.1 −0.4 −0.2 −0.6

Daily Streamflow Performance Metrics NSE +0.07 +0.12 +0.06 +0.24
PBIAS (%) −7.0 −7.6 −7.9 −18.7

Monthly Streamflow Performance Metrics NSE +0.20 +0.09 +0.17 +0.33
PBIAS (%) −4.7 −8.6 −6.4 −14.8
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Fig. 14. Bivariate correlation analysis relative performance of SPE-driven simulations to rain gauge-driven simulation, elevation range, and rain gauge density. 3D surface denotes the
performance's trend of SPE, compared to rain gauge (P%), as input for SWAT simulation. The black dot point indicates the relative size of the basin area.
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